Epigallocatechin gallate (EGCG: 1), which exhibits various biological activities, including cancer prevention, antiviral, or antimicrobial activities, is a major component of catechin derivatives derived from tea. The therapeutic potential of 1 and safe feature as food ingredient have attracted a great deal attention in recent years. Since these unique bioactivities are expected to be candidates for drug development, the detailed structure-activity relationship (SAR) study has been a significant work. However, investigations of such bioactivities have been limited to natural products and/or their derivatives. Thus, developing an efficient and flexible synthetic method has strongly been desired. During the course of our synthetic investigation on the galloatechins, we have found that synthetic 5,7-dideoxy-epigallocatechin gallate (DO-EGCG) (2) possesses more potent anti-influenza activities than natural EGCG (1). Inspired by this finding, we have launched an investigation into the synthesis of amino-gentyl 5,7-dideoxy-gallocatechin gallate (APDOEGCG: 3). The amino group of 3 would be enable for readily incorporation of probe units (biotin, fluorescent and radioactive compounds) and immobilization with gel