S37-1 Diversity and functions of sPLA2 enzymes

○Makoto MURAKAMI^{1,2}

presented.

¹Biomembrane Signaling Project, The Tokyo Metropolitan Institute of Medical Science, ²PRESTO, JST

Phospholipase A₂ (PLA₂) represents a group of enzymes that catalyze the hydrolysis of glycerophospholipids to yield fatty acids and lysophospholipids. To date, there are more than 20 enzymes, including intracellular cPLA₂s and iPLA₂s and secreted PLA₂ (sPLA₂s), in mammals. Although the functions of intracellular PLA₂s in regulating diverse cellular responses have been well documented, the roles of individual sPLA₂ enzymes and their relevant substrates in vivo still remain largely obscure. Considering that sPLA₂s are secreted, require mM order of Ca²⁺ for catalysis, do not show arachidonate selectivity, and display isozyme-specific cellular distributions, it is likely that their main target substrates exist in extracellular microenvironments. Our recent studies using transgenic and knockout mice for several sPLA2 enzymes, in combination with lipidomics approaches, reveal their distinct contributions to various biological events such as

reproduction, innate immunity, allergy, skin homeostasis, and metabolic syndrome. Some examples for the unique roles of particular sPLA₂ enzymes and their relevant substrates in vivo will be