S28-6 Role of bradykinin in the angiotensin II type 2 receptor-mediated vasodilatation OKatsutoshi YAYAMA¹, Te Chih CHEN¹, Yuji KAMEHARA¹, Tohru TANABE¹, Hiroshi OKAMOTO¹ ¹Kobe Gakuin Univ., Fac. Pharm. Sci.

Among many factors inducing vascular lesions associated with atherosclerosis, hypertension and diabetes, angiotensin II (Ang II) has been recognized as a major factor behind endothelial dysfunction and atherosclerotic plaque development; stimulation of the vascular Ang II type 1 (AT_1) receptor produces vasoconstriction and proinflammatory responses. In contrast to these effects mediated by the AT₁ receptor, Ang II exerts vasodilatation and anti-inflammatory activities by stimulating the AT_2 receptor. We have demonstrated that bradykinin (BK) and its receptors play an important role in the AT_2 receptor-dependent activation of endothelial nitric oxide synthase. BK is generated and liberated from aortic segments of rat and mouse in vitro in response to Ang II (>10⁻⁹ M) via the AT₂ receptor. The AT₂-receptor-dependent BK generation by aorta is enhanced by ARBs and abolished by a serine-proteinase inhibitor and endothelial denudation, suggesting the AT_1 -receptor-repressive, serine-proteinase-involved and endothelial-dependent mechanisms. Ang-(1-7) (>10⁻¹⁰ M), a vasodilator peptide generated from Ang II by ACE2, also reveals the activity stimulating BK generation in aorta via the activation of AT_2 receptor. These results suggest that both Ang II and Ang-(1-7) antagonize the AT_1 -receptor-mediated vasoconstrictor effect by stimulating BK generation via the AT_2 receptor. Masking the AT_1 receptor-mediated suppression of AT_2 receptor signaling associated with vascular BK generation seems to be one of the mechanisms underlying the activation of AT₂ receptor by ARBs