S18-5 Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound

○Yasuo MORI¹, Shigeki KIYONAKA¹, Kenta KATO¹, Motorhio NISHIDA², Kazuhiro MIO³, Chikara SATO³, Itaru HAMACHI¹

¹Kyoto Univ. Grad. Sch. Eng., ²Kyushu Univ. Grad. Sch. Pharm. Sci., ³AIST

Canonical transient receptor potential (TRPC) channels control influxes of Ca^{2+} and other cations that induce diverse cellular processes upon stimulation of plasma membrane receptors coupled to phospholipase C (PLC). Invention of subtype-specific inhibitors for TRPCs is crucial for distinction of respective TRPC channels that play particular physiological roles in native systems. Here, we identify a novel pyrazole compound (Pyr3) which selectively inhibits TRPC3 channels. Structure-function relationship studies of pyrazole compounds showed that the trichloroacrylic amide group is important for the TRPC3 selectivity of Pyr3. Electrophysiological and photoaffinity labeling experiments reveal a direct action of Pyr3 on the TRPC3 protein. In DT40 B lymphocytes, Pyr3 potently eliminated the Ca²⁺ influx-dependent PLC translocation to the plasma membrane and late oscillatory phase of B cell receptor-induced Ca^{2+} response. Moreover, Pyr3 attenuated activation of nuclear factor of activated T cells, a Ca²⁺-dependent transcription factor, and hypertrophic growth in rat neonatal cardiomyocytes, and in vivo pressure overload-induced cardiac hypertrophy in mice. These findings on important roles of native TRPC3 channels are strikingly consistent with previous genetic studies. Thus, the TRPC3-selective inhibitor Pyr3 is a powerful tool to study in vivo function of TRPC3, suggesting a pharmaceutical potential of Pyr3 in treatments of TRPC3-related diseases such as cardiac hypertrophy.