S07-4 Function of TRIC channels in intracelular Ca2+ store

ODaiju YAMAZAKI¹, Shinji KOMAZAKI², Miyuki NISHI¹, Hiroshi TAKESHIMA¹ ¹Grad. Sch. of Pharmaceut. Sci., Kyoto Univ., ²Saitama Med. Univ.

Cytoplasmic Ca²⁺ is a major second messenger that controls important cellular functions including muscle contraction, transmitter release, gene transcription, cell growth, and cell death. Two principle sources provide Ca^{2+} to the cell: channels in the plasma membrane that open to allow external Ca^{2+} to enter the cell, and ryanodine receptor (RyR) and IP₃ receptor (IP₃R) in the endoplasmic/sarcoplasmic reticulum (ER/SR) that release Ca^{2+} . In particular, Ca²⁺ release from ER/SR was mediated by RyR or IP₃R. Ca²⁺ release via RyR and IP₃R takes advantage of overwhelming Ca^{2+} concentration gradient. Efficient Ca^{2+} release events would not be possible if only Ca²⁺ moved across the membrane; the rapid movement of the cations would quickly bring the ER/SR membrane potential to the Ca^{2+} reversal potential and should inhibit following Ca^{2+} release. Several K⁺ and Cl⁻ selective channels on the ER/SR, which were previously reported by several investigators, could also participate in neutralizing the transient negative membrane potential generated by Ca²⁺ release, whereas the molecular identity of putative counter-ion channels remains unknown.

This symposium focuses on functional analysis of TRIC (<u>tr</u>imeric <u>i</u>ntracellular <u>c</u>ation) channels using with mutant mice lacking TRIC channels. Ubiquitously expressed TRIC channels seem essential for physiological Ca^{2+} release that regulates important cellular functions, and therefore could be unique targets in pharmaceutical or agrichemical applications.