GS2-2 Protective effect of cobalt on hepatotoxicity in mice

OKanako NAKASHIMA¹, Miyuki FUCHIUE¹, Hitomi FUJISHIRO¹, Seiichiro HIMENO¹ ¹Lab. Molecular Nutrition & Toxicology, Fac. Pharm., Sci., Tokushima Bunri Univ.

Co-administration of cobalt chloride (CoCl₂) suppressed hepatotoxicity induced by CdCl₂ administration in a concentration-dependent manner in mice. CoCl₂ also suppressed hepatotoxicity induced by lipopolysaccharide, concanavalinA, and acetaminophen. To elucidate the mechanism of protective effects of CoCl₂ against hepatotoxicity, we determined the expression of interleukin-6 (IL-6), serum amyloid A (SAA), heme oxygenase-1 (HO-1), and glutathione (GSH) levels in the liver. Administration of CoCl₂ resulted in changes of these factors, but the protection by CoCl₂ against the hepatotoxicity induced by the four types of hepatotoxicants could not be explained by a single factor, suggesting the involvement of multiple factors in CoCl₂-induced protection. The production of serum amyloid A (SAA), which is an acute-phase protein induced by CdCl₂ administration, was dramatically reduced by co-administration of CoCl₂. On the other hand, CoCl₂ administration enhanced expression of IL-6, which induces expression of SAA, in the liver. These data suggest that the suppression of signal transduction pathway leading to the expression of SAA gene after stimulation with IL-6 may be involved in the protective action of CoCl₂.