Development of Heat Shock Proteins with Controlled Distribution Properties and Their Application to Vaccine Delivery

OMakiya Nishikawa (Grad. Sch. of Pharm. Sci., Kyoto Univ.)

Effective delivery of antigen to antigen presenting cells is a key issue for developing vaccines for viral infections and cancers. Controlling the in vivo distribution of antigens that are administered as peptide or DNA forms will be effective in increasing antigen-specific immune responses including the induction of cytotoxic T lymphocytes. Heat shock protein 70 (Hsp70), a family of highly conserved molecules that are induced under stress conditions and plays essential roles as a molecular chaperon, can present a broad repertoire of tumor antigens to dendritic cells and elicit innate immunity. Based on the structure-distribution correlation obtained using many macromolecular compounds with diverse physicochemical properties, we have developed Hsp70-antgen conjugates with controlled tissue and intracellular distribution properties. A peptide from ovalbumin was selected as a model antigen and was conjugated with Hsp70 to obtain Hsp70-peptide fusion proteins (Hsp70-pep). The fusion proteins or plasmid DNA expressing them were used to induce the peptide-specific immune response. Poly-histidines, which is reported to have an ability to accelerate the release of endocytosed compounds from endosomes to the cytosol, was coupled to Hsp70-pep to facilitate its delivery to the cytosol where the interaction of the peptide with MHC class I takes place. On the other hand, the delivery of intracellular antigens of tumor cells was challenged by using cell-penetrating peptide (CPP)-coupled Hsp70. The escape of the Hsp70-CPP fusion protein from tumor cells was first confirmed, and its application to anti-tumor therapy was examined in tumor-bearing mice.