Histamine H₁ Receptor Gene Expression Mechanism as a Target of Therapeutics for Allergy

Hiroyuki Fukui (Grad. Sch. Health Biosci., Univ. Tokushima)

Histamine H₁ receptors (H1Rs) mediate type-1 allergy and H₁ anti-histamines are major therapeutics for allergic diseases. The expression level of H1Rs is regulated by two mechanisms and seems to play important roles in allergic symptoms. The two mechanisms include receptor down-regulation through desensitization and receptor up-regulation through gene expression. Phosphorylation of H1Rs seemed crucial in H1R-mediated down-regulation. Several protein kinases could phosphorylate H1Rs. On the other hand, H1R up-regulation was also induced by H1R stimulation through H1R gene expression. Protein kinase C was suggested to mediate the gene expression. Up-regulation of H1R and H1R mRNA was induced in nasal mucosa of nasal hypersensitivity allergy model rats upon allergy provocation suggesting the dominance of H1R gene expression, compared with H1R desensitization. Therapeutics for allergic diseases strongly suppressed the elevation of H1R mRNA in the nasal mucosa. Dexamethasone targeted H1R gene promoter, while targets of other therapeutics including suplatast, Sho-seiryu-to and Kujin seemed at up-stream mediators. Suplatast strongly suppressed the elevation of interleukin-4 mRNA, whereas Sho-seiryu-to and Kujin strongly suppressed interleukin-5 mRNA in the nasal mucosa of allergic rats.