Ligand-Dependent Distinct Coupling with G Proteins

○Hitoshi Kurose and Motohiro Nishida (Dept. Pharmacol. Toxicol., Grad. Sch. Pharm. Sci., Kyushu Univ.)

G proteins are classified into four families: G_s , G_i , G_q , and G_{12} . β₂-adrenergic receptor (β₂AR)-mediated responses are believed to be exclusively mediated by G_s-adenylyl cyclase-cAMP pathway. However, it has been recently proposed that several G protein-coupled receptors transduce distinct signaling pathways through different G protein(s) in an agonist-dependent manner. We examined the possibility that β_2AR also couples to different G proteins. Among β_2 -selective agonists, an order of efficacy to couple to G_s is isoproterenol > formoterol, procaterol > fenoterol >> salmeterol. These agonists also activated G_i, and an order of efficacy for β_2 AR- G_i -coupling was same as that of β_2 AR- G_s -coupling. We next examined whether β_2AR couples to G_{12} family G proteins, and found that β_2AR did not couple to G_{12} and G_{13} . β_2AR does not couple to G_q , but couples to G_{16} , a member of G_q family G protein. We found that β_2 -selective agonists activated G_{16} , but the ability to activate G_{16} did not correlate with that of G_s . Therefore, the mode of β_2AR - G_{16} coupling is different from that of β_2AR - G_s coupling. We also examined the ability of β_2 -selective agonists to activate $\beta_1 AR$. In contrast to $\beta_2 AR$ activation, the agonist's ability to activate $\beta_1 AR$ was not correlated with that of β_2AR . It suggests that the amino acid residues of β_1AR which is necessary for the activation are different from that of β_2AR . Although β_2AR has an ability to couple to different G proteins, it remains that these results are translated into clinical significance.