S57-2 Roles of Ca²⁺-activated K⁺ channel in immune system

OSusumu OHYA¹, Hisao YAMAMURA¹, Yuji IMAIZUMI¹ ¹Nagoya City Univ., Grad. Sch. Pharmaceut. Sci.

The intermediate-conductance Ca^{2+} -activated K⁺ channel, K_{Ca}3.1 plays pivotal roles in the control of cell proliferation and differentiation in various cell types, including T-lymphocytes. We recently identified the novel spliced variants of $K_{Ca}3.1$ ($K_{Ca}3.1$ -sp) from human and rodent lymphoid tissues, lacking the N-terminal domains of $K_{Ca}3.1$ ($K_{Ca}3.1$ -wt), as a result from the alternative splicing events. The co-expression of $K_{Ca}3.1$ -sp with K_{Ca} 3.1-wt suppressed the trafficking of K_{Ca} 3.1-wt to the plasma membrane in HEK-293 cells. IK_{Ca} current due to hK_{Ca}3.1-wt activity was also suppressed by K_{Ca}3.1-sp in dominant-negative manner in Xenopus oocyte expression system. In this symposium, we will describe that the alternative splicing events significantly contribute to the fine tuning of K_{Ca} 3.1 activity in physiological and/or pathophysiological conditions in immune cells such as T-lymphocytes. In addition, we will demonstrate the significant changes in $K_{Ca}3.1$ expression in the pronounced inflammatory reactions in the delayed type hypersensitivity (DTH) model mice and the megakaryocytic differentiation of human leukemic K562 cells. Moreover, effects of $K_{Ca}3.1$ blockers/openers on them will be also shown to suggest that K_{Ca} 3.1 is a potential target for drug development with respect to, for example, the novel pharmacotherapy of DTH and primary promyelocytic leukemia.