S31-2 Synthetic Study on (-)-Cercosporamide Derivatives as Novel Anti-diabetic Agents

○Akihiro FURUKAWA¹, Tsuyoshi ARITA¹, Takehiro FUKUZAKI¹, Makoto MORI¹, Susumu SATOH², Takeshi HONDA¹, Kazushi ARAKI¹, Masanori KUROHA¹, Jun OHSUMI¹, Kenji WAKABAYASHI¹, Shinko HAYASHI¹, Yumi MATSUI¹, Takuo MATSUMOTO¹

¹Daiichi Sankyo Co., Ltd., ²Daiichi Sankyo RD Associe Co., Ltd.

In our search for a novel anti-diabetic agent, (-)-Cercosporamide, which is known as an antifungal agent, showed a potent plasma glucose-lowering effect in hyperglycemic KK/Ta mice. We succeeded in modifying each of the functional groups of (-)-Cercosporamide and synthesized various derivatives. Compound A showed the most potent efficacy and safety among them. We found that compound A partially transactivated PPAR γ . Although PPAR γ full agonists such as Rosiglitazone have been clinically used and show beneficial effects, the use of these drugs has been limited because of their adverse effects, including edema, weight gain, and so on. Recently, it was proposed that a PPAR γ partial agonist would be effective in improving insulin resistance without undesirable adverse effects. Accordingly, we embarked on a further investigation of (-)-Cercosporamide derivatives as PPAR γ partial agonists and finally we acquired some promising compounds.

