S22-3 Analysis of Aβ metabolic mechanism and identification of a novel therapeutic target for Alzheimer disease

ONobuhisa IWATA¹ ¹Riken

Aggregation and accumulation of amyloid- β peptide (A β) in the brain are triggering events leading to the pathological cascade of Alzheimer's disease (AD). A β accumulates in AD brains and forms amyloid plaques, which consist mostly of amino-terminally truncated and/or modified Aßs, among which Aß3pyroglutamate $(A\beta 3pE)$ is a major product. Thus, the accumulated species of A β are different from those secreted from neurons. Aß3pE-42 is more easily self-aggregated (250-fold), and is more resistant to proteolytic degradation (4-fold) than A β 1-42. Therefore, A β 3pE appears to act as a seed for the formation of oligomers and amyloid plaques. A β is physiologically degraded via the neprilysin (NEP)-mediated pathway. However, if NEP activity is low, a compensatory metabolic pathway is up-regulated, in which exopeptidases, such as aminopeptidase or dipeptidyl peptidase, and glutaminyl cyclase (GC) may be involved, generating A β 3pE. GC is up-regulated by A β aggregate-induced inflammatory responses, such as gliosis, and reduced activity of NEP promotes gliosis and consequently further up-regulates GC. Therefore, up-regulation of NEP may have the potential not only to increase A β degradation, but also to prevent inflammatory responses and A β 3pE formation by down-regulating GC. In addition, inhibition of A β 3pE formation appears to be a novel target for therapy and prevention of AD. Development of a GC inhibitor is in progress.