S22-2 Modulation of beta- and gamma-secretases for the treatment of Alzheimer disease OTaisuke TOMITA¹

¹Grad. Sch. Pharm. Sci., Univ. Tokyo

Genetic and biochemical studies provide strong evidence that the production and the deposition of amyloid- β peptides (A β) contribute to the etiology of Alzheimer's disease (AD). Thus, β - and γ -secretases, that are responsible proteases for the A β generation, are plausible molecular targets for AD treatment. Both β - and γ -secretases are aspartic proteases that cleave at the N- and C-terminal, respectively, scissile bonds of A β . Drugs that regulate the production of A β by inhibiting or modulating these secretase activities could provide a disease-modifying effect on AD, although recent studies suggest that both secretases play important roles in several cellular signaling pathways. Thus, understanding the molecular mechanism whereby β - and γ -secretases recognize and cleave the substrates is a critical issue for the development of compounds that specifically regulate Aβ-generating secretase activity. I will review our biochemical, chemical biological and structural studies on the β - and γ -secretases, and envision the direction for developing effective and selective secretase inhibitors as therapeutics for AD.