S12-2	Pharmacometric approach to optimizing pharmaceutical formulations
	○Kozo TAKAYAMA ¹ ¹Hoshi Univ.
T	ne ICH Q8 guidelines have necessitated the establishment of a science-based rationale and the "Quality by
Desi	gn" concept has been advocated in the pharmaceutical formulation development. The characteristics of drug
prod	ucts are influenced by a number of causal factors related to pharmaceutical formulations and manufacturing
cond	litions. In recent years, statistical approaches such as response surface methods (RSM) have been used for
seek	ing acceptable formulations of pharmaceuticals. However, predictions based on linear regression models are
ofter	n limited and the results obtained occasionally exhibit poor estimation. To overcome these difficulties caused
by li	near regression models, a novel RSM incorporating a multivariate spline interpolation (MVS) was developed
to ge	enerate smooth and natural response surfaces, and thereby to estimate a highly accurate optimal solution.
Con	currently, a method to evaluate the reliability of the optimal solution was newly developed employing a
boot	strap re-sampling technique (BS) and a Kohonen's self-organizing map (SOM). Predominant feature of a
nove	el RSM approach based on MVS together with BS and SOM was demonstrated by the design and optimization
for s	everal pharmaceutical products. In these model formulations, reasonable optimal solutions were successfully
dete	rmined. It would be unable to reach the exact combination of causal factors using a normal analysis based on a

one-factor-at-a-time experiment.