S10-3 Development of photosensitizer-loaded polymeric micelles for enhanced photodynamic therapy

ONobuhiro NISHIYAMA¹, Yuji MORIMOTO³, Kazunori KATAOKA^{1,2}

¹Univ. of Tokyo, Graduate School of Medicine, ²Univ. of Tokyo, Graduate School of Engineering, ³National Defense Medical College

Photodynaimic therapy (PDT), which involves the systemic administration of photosensitizers (PSs) and the following photoirradiation to the diseased sites, is a promising approach for the treatment of age-related macular degeneration (AMD) and malignant tumors. Here, I will introduce novel polymeric micelles for the delivery of PSs. It is known that most PSs are easily form aggregates, resulting in their self-quenching. To prevent the self-quenching of PSs, we developed ionic dendritic photosensitizers (DP), and incorporated them into polymeric micelles. In vitro experiments revealed that polymeric micelles incorporating 3rd generation DP showed the highest photocytotoxicity due to effective segregation of the core photosensitizer by the large dendritic wedge. In the animal experiments, we confirmed that DP-loaded micelles showed the effectiveness in the treatment of experimental models of AMD and solid tumors. Also, our results revealed that PDT using DP-loaded micelles did not cause skin phototoxicity, which is a major side effect of current PDT. Based on these results, we applied DP-loaded polymeric micelles for the treatment of bladder cancers, which are known to be intractable due to multiple cancer formation. We demonstrated that DP-loaded micelles showed appreciable PDT efficacy against bladder cancer models while restraining bladder atrophy. These results suggest the utility of DPc-loaded micelles for the effective PDT.