GS04-1 Chemoprotection and structure-activity relationships of p53 inhibiting 2-heterosubsutituted 1,3-azole derivatives

○Yukio MIURA¹, Yu MATSUMOTO¹, Yo YAMAGUCHI¹, Tetsuji MURASE¹, Kensuke OKUDA¹, Satoshi UEDA¹, Hideko NAGASAWA¹

¹Gifu Pharmaceutical University

The chemoprotection of normal cells from p53 dependent apoptosis induced by chemo- and radiotherapy could be important for cancer treatment. In order to investigate the structure-activity relationship of p53 inhibitors and to develop more potent p53 inhibitor, we designed and synthesized a series of small heterocyclic analogs including 2-heterosubstetuted 1,3-azole from PFT as a lead compound. For the biological evaluation, we examined

chemoprotection ability of the analogs to abrogate cell death induced by doxorubicin and inhibition of p53 transactivation. The novel imidazothiazole derivatives GPU-100 and 62 were more potent than PFT- β . These results suggested that the presence of linear conjugated system bearing aromatic terminal group at 2-position may be important for inhibition of p53.

[ab	le	Structures and	Chemoprotective	Effects of	f 2-Heterosubstitute	d 1,3-Azole	Derivatives
-----	----	----------------	-----------------	------------	----------------------	-------------	-------------

Compd	R ¹	R ²	R ³	R ⁴	cLogD _{pH=7.0} ^a	Protection ratio ^b
PFT-β	-(CH	l ₂) ₄ -	Н	<i>p</i> -Tol	0.92	1.54
GPU-55	-(CH	l ₂) ₃ -	Н	<i>p</i> -Tol	4.21	1.27
GPU-123	н	н	Н	<i>p</i> -Tol	2.88	1.18
GPU-157	-(CH	1 ₂) ₄ -	Н	Cyclohexyl	1.14	1.37
GPU-62	-(CH	l ₂) ₄ -	Н	\sim	1.04	1.69
GPU-93	-(CH	l ₂₎₄ -	н	$\neg \neg \bigcirc$	1.49	1.53
GPU-100	-(CH	1 ₂) ₄ -	Н	-=-	0.98	1.88
GPU-140	-(CH	l ₂₎₄ -	<i>p</i> -Tol	н	0.92	1.07

^a Caluculated by Pallas 3.0. ^b Protection ratio = Cell survival with inhibitor / Cell survival without inhibitor.