Endothelin-1 Production and Its Involvement in Cardiovascular Diseases

Mamoru Ohkita, Masanori Takaoka and Yasuo Matsumura
(Osaka Univ. Pharmaceut. Sci.)

Endothelin (ET) has been implicated in the pathogenesis of several cardiovascular disorders because of their powerful vasoconstrictor and growth-promoting properties. The ET family consists of three isoforms, ET−1, ET−2 and ET−3. ET−1 appears to be the predominant member of the family generated by vascular endothelial cells. In view of the multiple cardiovascular actions of ET−1, there has been much interest in its contribution to the pathophysiology of hypertension and arteriosclerosis. We have been investigating the roles of ET_A and ET_B receptors in ET−1-related cardiovascular diseases using subtype-selective ET receptor antagonists and ET_B receptor-deficient animals. Our studies have demonstrated that ET−1 overproduction and ET_A-mediated ET−1 actions seem to play a crucial role in the development of several types of hypertensive and post-ischemic diseases. On the other hand, ET−1 biosynthesis and release are regulated at the transcriptional level, and various endogenous substances are known to stimulate ET−1 gene expression by DNA binding of transcription factors. We and others have recently demonstrated that nuclear factor-κB (NF-κB), a transcription factor with a pivotal role in inducing genes involved in immune, inflammatory and stress responses, is responsible for endothelial ET−1 production. In in vivo studies, agents that can inhibit the NF-κB activation improved the development of ET−1-related cardiovascular diseases. Thus, NF-κB inhibition may be one of pertinent treatments in ET−1 related diseases.